The projects funded in 2024 explore innovative solutions to pressing educational needs.
In 2024, Education Innovation Grants totaling $749,768 supported 11 research projects proposed by investigators in nine departments, labs, centers, and institutes across MIT. Research themes include leveraging artificial intelligence tools to support learning, exploring low-tech ways to bring underserved audiences into STEM education, and developing new materials, tools, and curriculum to improve equity and quality of learning experiences.
ASCENDANT MATH: Automation in simulations to create experiences for nuanced decisions among novices teaching mathematics
Novice teachers need realistic practice experiences and focused feedback before entering the classroom. Depending on the type of practice, novice teachers might not receive timely feedback, or feedback may not be focused enough for the teacher to incorporate into their practices. Utilizing the digital platform, Teacher Moments, Barno’s team will address this challenge by offering clinical simulations where educators rehearse and reflect on teaching decisions through video, images, and text. These simulations help teachers practice daily improvisational interactions and foster equity awareness in classrooms.
An educational module for creating modern electronics in the undergraduate STEM laboratory program
Modern electronics, influenced by transistors, have revolutionized society. However, high costs and limited resources hinder hands-on learning experiences with this technology for undergraduates. The 2022 CHIPS Act aims to address this by refreshing education programs. Addressing the need for hands-on learning opportunities, Long will create an educational module, including an experimental kit, for photolithography and procedures for fabricating graphene-based transistors. The module will be tested in the Physics Junior Lab and shared with other universities through a workshop.
Bridging STEM education gaps: fostering aspirations through learning festivals and deployable learning toolkits in underserved American communities
Education quality often lags in rural areas and correctional facilities due to funding disparities. For over a decade, MIT Spokes, a student-led team committed to narrowing the educational gap in STEM disciplines among rural, low-income, and underserved communities nationwide, has cycled cross-country, delivering STEM workshops to elevate aspirations and provide resources. They implement hands-on learning kits during one-day festivals, tailored to community needs. By engaging with stakeholders and refining their approach, Spokes aims to maximize impact and open opportunities for students unfamiliar with institutions like MIT.
Bridging the vocabulary divide: using conversational AI agents to develop vocabulary skills in children from lower socioeconomic status
Vocabulary knowledge is crucial for reading achievement and school completion, but knowledge gaps due to socioeconomic status persist. Current school approaches fail to close these gaps due to lack of scalability. Ozernov-Palchik, Catania and team will develop a speech-based LLM-empowered conversational tutor to enhance vocabulary knowledge in third and fourth graders from diverse socioeconomic backgrounds. It will use best practices in vocabulary instruction through read-aloud digital books and explicit word teaching. Systematic evaluations will measure its effectiveness and educational impact.
Empowering global synthetic biology learners using a robotic cloud lab network for enabling collaborative, scalable research projects
To enhance bio literacy and engagement with synthetic biology, Kong aims to expand the MIT Media Lab course, How to Grow (Almost) Anything, by creating a global “robotic cloud lab network,” allowing users without regular access to wet labs the opportunity to experiment and create. This network, organized by MIT, Harvard researchers, and supported by global teaching assistants, will provide community labs with programmable robots and supplies and a handbook to guide learning exercises. In Spring 2025, Kong will execute a global research project on protein therapies for antibiotic-resistant bacteria across the robotic cloud lab network.
Games for climate education: developing game-based facilitation of the En-ROADS climate simulator
Climate Interactive’s innovative climate change simulator En-ROADS has been very successful in engaging participants to think about the impact of alternative policies and actions to mitigate and reverse the effects of climate change. Yet, meaningful shifts in understanding, policy, and action require education and understanding at massively greater scales than are currently possible with the En-ROADS facilitation model. Expanding on prior work, Cook and Klopfer seek to explore game-based facilitation and the scaling of such a solution.
Interactive social robots for nurturing social-emotional skills in Arabic-speaking refugee children through culturally sensitive design and algorithms
Refugee children from Arabic-speaking countries face integration challenges due to language barriers, literacy struggles, and social-emotional difficulties. Existing methods often fail to preserve their native language and cultural identity, impacting their education and well-being. Alghowinem and Park will develop an AI-driven social robot platform that aims to address these needs with customized Arabic automatic speech recognition, text to speech, and interactive applications. This platform will enhance reading, vocabulary, and social-emotional learning through culturally sensitive interactions.
NeuroChat: bridging the gap in personalized education through physiological sensing integration in AI-based adaptive learning platforms
Generative AI could revolutionize education by offering personalized learning, but its implementation remains uncertain. The novelty of chatbots may fade, and improper management of learning speeds could widen achievement gaps. Addressing these challenges, Kosmyna aims to develop an adaptive learning platform, called NeuroChat, using brain sensing biofeedback and generative AI that will aim to personalize responses based on cognitive states. Working with platforms such as Khan Academy, NeuroChat seeks to provide customized support, enhancing individual learning paths and potential.
Remixable resources to expand creative learning opportunities with OctoStudio
Led by MIT Media Lab’s Lifelong Kindergarten Group, Rusk will create remixable educational resources for the OctoStudio mobile coding app. These resources will help educators in the Global South and beyond engage students in creative, project-based learning, building skills like creative thinking and problem-solving. The project includes educator guides, workshop slides, coding cards, and sample projects, all designed with input from diverse cultural contexts and available in multiple languages.
SIDAI – Scope, Ideate, and Develop with Artificial Intelligence: developing and evaluating a web-based platform and a chatbot teaching assistant for teaching problem-solving in higher education
Organizations are emphasizing creative problem solving, system analysis, and conscientious decision-making to tackle complex, ill-structured problems. Active learning supports these skills but its implementation faces barriers like large class sizes, preparation time, and student resistance. Generative AI integration in education is complex but promising. Through the development of SIDAI, a web-based platform, and its chatbot Sid, Lavi intends to create tools that assist in active learning and provide personalized feedback to students, aiming to enhance teaching and learning experiences.
The long-run effects of education quality: schools, cognitive and non-cognitive investments, and teachers and their impacts on schooling and labor market outcomes
High-quality schools and teachers significantly impact student success, including academic achievement and labor market outcomes. Using administrative data from Texas, Dharmasankar will identify the links between school quality and adult outcomes like earnings and college attainment. Initial findings suggest late middle school and early high school are critical periods. The project aims to identify which schooling periods most influence long-term success and inform policymakers on resource allocation across grades and schools.